Qu’est ce que « le frottement » ?

C’est une force qui s’oppose à tous les mouvements. Dès qu’un objet risque de subir un mouvement (déséquilibre des forces agissants sur lui) le frottement apparaît. C’est un peu l’équivalent de l’inertie qui elle s’oppose à tous les changements de vitesse des objets.

Il y a frottement dès qu’une tentative de mouvement apparaît.

Est ce bien ? Est ce mal ?

Pour le coté sympathique du frottement, une question : « Que préférez vous, faire du vélo sur une route sèche ou sur une route verglacée ? A moins d’être un peu masochiste tout le monde préfère la première option. Autre bien fait du frottement, comment arrêter votre voiture avant le fond du garage ?

Autre situation, comment diminuer la consommation de votre voiture ? En diminuant ses frottements internes (huile) ou externes (pneu, forme carrosserie) par exemple. Encore un exemple lié aux sports (l’avantage c’est que vous ressentez physiquement le frottement), lorsque vous pédalez avec des pneus mal gonflé, vous remarquerez que c’est nettement plus fatiguant, car le frottement pneus-route est grand, grand contact. Comment améliorer la situation ? En augmentant le gonflage de vos pneus, ce qui diminuera le frottement pneus-route. Le huilage de votre chaîne aura le même résultat, moins d’efforts ! (testez un vélo tout rouillé et un vélo tout bien huilé !)

Donc certaine fois on souhaite maximiser le frottement alors que dans d’autre cas on souhaite le minimiser. Il n’y a pas de bien ou de mal !

Historique

Dans les années 1700, Guillaume Amontons, qui fut le premier à étudier le frottement de façon un peu scientifique, trouva une loi sur le frottement solide-solide. Quelques années plus tard (autour de 1750), Charles-Augustin Coulomb compléta cette vision du frottement. Voici leur regard sur le frottement, il ont étudié la « chose » de manière macroscopique, un solide que l’on cherche à faire glisser sur une surface donnée :Frottement, test AmontonsVoyons tout cela et qu’en penser !

Ce dispositif est constitué d’un solide (en bleu) qui est appuyé sur la surface (hachuré). Ce solide outre son poids propre (admis négligeable), on lui ajoute une force de placage P. Dans un premier temps, la valeur de la force de plaquage (P) fixée, Guillaume, pour les intimes, tira avec une force K sur le solide et il enregistra la force nécessaire pour que le solide glisse sur la surface. C’est simple mais comme on va le voir, diablement efficace et toujours d’actualité dans beaucoup de cas pratiques.

Frottement, diagramme frottement-traction

Que constate-t-on (rappel : à force de plaquage (P) fixe) ?

1- Tant que le corps est immobile, les forces (F) et (K) sont identiques, heureusement pour Newton et l’équilibre des forces. C’est comme si la force de frottement (F) s’adapte à la force (K).

2.- Il faut que la force de traction (K) soit plus grande qu’une certaine force pour que le corps se mette en mouvement.

3.-Lors de la mise en mouvement, la force de traction (K) nécessaire diminue légèrement. Comme si la force de retenue (F), la force de frottement diminuait brusquement.

4.- La force de frottement (F) est constante, pour un mouvement identique (pas de changement de vitesse) et une force (K) stable.

Guillaume Amontons et plus tard Charles-Augustin Coulomb, se sont posés la question comment varierait ce point de mise en mouvement si on modifie la force de plaquage (P). C’est là, tout l’intérêt des travaux d’Amontons-Coulomb. Ce qu’ils trouveront est contre intuitif, ce point ne dépend que des matières à l’interface solide-surface et de la force de plaquage ! La taille de la surface en contact n’est pas pertinent dans la définition de la force de frottement. Donc si l’on représente le rapport (F/P) en fonction de la force de traction K on a une courbe de forme : 

Frottement, diagramme coeficient frottement-traction

Le rapport F/P est appelé coefficient de frottement (noté par la lettre grec μ), et le maximum de ce rapport est un point particulier qui défini la mise en mouvement ou la limite d’adhérence. Il est nommé soit coefficient d’adhérence soit coefficient statique μs. En testant tout de sorte de matière, on montre que ce maximum dépend uniquement des matières en présence. Outre les expérimentations, l’apport de Charles-Augustin Coulomb aux travaux d’Amontons est de montrer que la courbe dans la frottement de glissement n’est pas « plate », mais s’infléchit en fonction de la force de traction (K) et surtout de la vitesse du déplacement.

Idées de coefficients de frottement statique

Remarque en première approximation, grossièrement on peut prendre 80% du coefficient statique s) pour la valeur du coefficient dans la partie dynamique.

Frottement, quelques coefficients de frottement

Quelques sites avec divers couples de matières et leur coefficient statique respectif : site 1, site 2, site 3 ou site 4

Comment interpréter ces valeurs ?

Exemple avec un couple de matière cuir-bois dont le coefficient de frottement statique μs = 0.6. Par déduction (mais c’est vraiment approximatif ), on trouve le coefficient de frottement dynamique μd = 0.6*0.8=0.48. Donc pour remuer un sac de cuir de 50kg sur un plancher, nous devrons tirer avec une force d’environ  300N=500N*0.6 et une fois en déplacement, nous pourrons réduire notre effort à  240N=500N*0.48.

Voilà vous avez déjà une idée plus clair de ce qu’est le frottement :

Une force qui s’oppose au déplacement d’un objet. Cette force dépend des surfaces en contact et elle diminue légèrement après la mise en mouvement.

Ou pour exprimer cela en une application réelle, prenons le cas ou vous devez déplacer votre commode en bois, quel sera la meilleure méthode ?

Frottement, commode 1 Frottement, commode 2 Frottement, commode 3 Frottement, commode 4

cas 1 : vous poussez votre commode directement sans aucun subterfuge.
cas 2 : vous insérez un « bac »entre le plancher et votre commode.
cas 3 : vous sortez les tiroirs et vous poussez le tout.
cas 4 : vous posez vos tiroirs sur la commode.

La meilleure méthode ? en fait c’est tout pareil !!!!! Pourquoi ? Si l’on considère que le bac, les pieds et les tiroirs sont fabriqués dans le même bois, et comme le frottement n’est pas influencé par l’aire de contact mais par les matériaux en présence et le poids de l’ensemble, toutes ces solutions seront identiques : même effort !

Le coefficient de frottement statique

Comment définir un coefficient de frottement statique :

Je ne vais pas vous faire la démonstration mathématique de l’expérience ci-dessus. Pensez simplement que le « moteur » du mouvement des objets est leur poids propre. Donc plus la force de mise en mouvement sera grande, plus la force de plaquage sur le plan incliné sera grande. Ci-dessous, en reprenant nos conventions sur les lettres des forces, vous avez le schéma des forces en présence. Un point à ne pas oublier, c’est que le coefficient cherché est celui de la limite de l’adhérence μs donc les forces (K) et (F) sont toujours égales jusqu’au moment du mouvement des objets. Un site pour la résolution mathématique : Wikipédia

Frottement, plan incliné

La relation entre l’angle d’inclinaison du plan et le coefficient statique (coefficient d’adhérence) est la tangente de l’angle de pente au moment de la mise en mouvement : tan(α) = μs = F/P

Plusieurs types de frottements

Comme vous l’avez certainement deviné, il y plusieurs types de frottement et nous en avons vu deux jusqu’à présent. Voici ces divers types :

frottement statique
frottement glissement
frottement de roulement
frottement visqueux

Le frottement statique et le frottement de glissement nous ont déjà passablement occupé, je dis cela pour ceux qui sont directement arrivé ici 😆 ! Il est vrai que cette vision du frottement présentée est essentiellement expérimentale et macroscopique.

Nous n’aborderons pas le frottement de roulement bien que je l’ai évoqué dans mes exemples avec les véhicules. Vous pouvez voir ce site, ce site ou encore ce site que j’aime bien, car la présentation du frottement est toute cycliste  😀 !  Une très courte mais pertinente explication sur le diamètre des pneus de vélo et le frottement engendré (pneu-route), c’est ici.

frottement visqueux

Concernant le frottement visqueux nous allons juste survoler le problème sans trop l’aborder, j’y reviendrais en toute fin d’exposé mais aussi en survol.

Le but de cette partie est de présenter l’apport des travaux de Charles-Augustin Coulomb et les travaux de Richard Stribeck réalisés dans les années 1890, c’est pas d’aujourd’hui 🙄 Coulomb comme je l’ai déjà mentionné, a trouvé que le frottement entre un solide et un plan, diminue avec la vitesse de déplacement du solide pour autant que ce glissement soit un peu aidé (beaucoup ?) avec une graisse ou de l’huile par exemple. Stribeck avança dans ce type de recherche et fini par mettre au point une courbe qui porte son nom, la courbe de Stribeck. C’est la courbe verte ci-dessous :

Frottement, courbe de stribeck

Que nous raconte  cette courbe ?

Pour commencer l’axe vertical représente le coefficient de frottement, nous l’avons déjà rencontré mais ici la différence c’est la présence de lubrifiant entre les solides. Donc le coefficient de frottement ne pourra pas être identique au simple couple matière solide – solide. En dehors de cela au départ de la courbe verte on peut presque dire que le coefficient est le même que le μs, mais ce n’est pas tout à fait le cas, quoique ….

Maintenant que représente l’axe horizontal et cette mystérieuse variable Z, c’est le nombre de Sommerfeld bien sûr ! 🙁 Quoi ? vous ne connaissez pas ce célèbre nombre qui exprime le rapport de la force visqueuse par la force de charge. C’est pas grave, vous avez bien vécu jusqu’à maintenant sans le savoir 😆 .

J’ai essayé de schématiser les trois zones intéressantes de cette courbe.

Dans la partie 1, le solide supérieur est mis en mouvement, au début (Z=0, car la force visqueuse n’est pas présente) le lubrifiant n’a pas d’effet, il ne sépare pas les solides et le glissement est de type solide-solide. On frotte sur les aspérités (voir chapitre plus bas). Le frottement est maximum, donc le coefficient μ est élevé. On parle de la zone limite.

Dans la partie 2, le solide supérieur se déplace de plus en plus vite et le lubrifiant peut, petit à petit, séparer les solides, d’un glissement solide-solide on passe à une situation ou le glissement est solide-lubrifiant-solide, on entre dans une phase hydrodynamique, c’est la zone mixte ou de régime onctueux.

Le solide augmentant sa vitesse (Z augmente) on se trouve dans la partie 3 dans le classique mouvement hydrodynamique, un solide sur un fluide. les forces visqueuses augmentent en fonction de la vitesse (courbe parabolique). Les solides ne se touchent plus.

Une excellente vidéo (6.37′) qui parle (sans le dire) de cette courbe ….

Oui, mais …….  c’est quoi le frottement ?

J’ai quand même réussi à vous parler du frottement depuis un bon moment sans vous dire ce que c’est, je suis content de moi  😮 A vrai dire c’est que j’ai essayé de retarder au maximum ce moment redouté, qu’est ce que c’est ce frottement ?

On en sait rien, ou plus exactement pas beaucoup !

Nous avons abordé le frottement en une vision macroscopique, mais  pour ce qui est des mécanismes mis en jeu dans les frottements il va falloir regarder cela de très près, premièrement à l’échelle des aspérités et ensuite encore plus près à l’échelle moléculaire. Comme nous nous intéressons à l’interface de solide, il est normal de spécifier que pour 95% d’entre eux nous avons de bonnes descriptions théoriques, essentiellement grâce à la physique quantique, de leurs caractéristiques générales (conduction électrique, couleur, magnétisme, solidité et leurs chimies). Pour ceux qui veulent plus d’informations quelques-uns de mes articles (atome, liaison chimique, métaux polycristallins) ou encore pour les plus érudits, recherchez sous liquide de Fermi, changement de masse des électrons, niveau d’exclusion de Pauli ou encore les travaux de Lev Landau.

Maintenant ce qui nous intéresse c’est le frottement (l’interaction) entre deux solides, dans ce cas il faut bien admettre notre « incompréhension » des mécanismes en jeu, et c’est certainement pour cela que nous ont légué Amontons-Coulomb-Stribeck prend toute son importance. Pour l’instant on n’a rien de mieux ! Pour la suite du texte, il y a beaucoup de conjectures et n’oubliez pas que d’ici quelques années (mois) cette partie devra être réécrite.

Les aspérités

Reprenons notre modèle de départ une surface sur laquelle est appuyé un bloc solide qui tend à glisser et essayons de comprendre pourquoi la taille de l’aire d’appui n’est pas primordiale pour définir les forces de mise en mouvement. Intéressons nous de manière « macro-microscopique » aux objets en présence, soit avec une vison de l’ordre du micron (1 micron=10-6 mètre). Pour idée le diamètre d’un cheveu est de l’ordre 50 à 100 microns, les détails que nous souhaitons observer sont environ 100 fois plus petit.

Pour présenter notre nouveau niveau d’observation, voici une analogie avec un court de tennis. Nous l’observons d’abord à 100 mètres puis à 10 cm. C’est exactement la même différence entre une surface observée à 10 cm et ensuite au niveau du micron pour nos solides en glissement (en l’occurrence une clé).

 Frottement, tennis 100m          Frottement, tennis 10cm

Frottement, clé 10 cm    

Remarque : nous ne parlerons que de surfaces parfaitement propres, pas d’impuretés, pas d’humidité ou de dépôts.

Comme on le voit sur le dessin la rugosité de la surface d’un solide présente des sommets, des creux qui forment les aspérités de surface et qui sont l’interface réel des solides. Il faut bien comprendre que ce n’est pas immanquablement les plus hauts sommets qui sont en contact car ils peuvent se situer face à un creux de l’autre solide. De plus la surface elle-même peut-être non plane, déformée. Il est difficile de définir la vraie « surface interface », celle dont dépend le frottement. Autre point a ne pas oublier, les surfaces si elles glissent l’une sur l’autre, il y a comme un rodage, un polissage des surfaces donc une augmentation de l’aire de contact et une diminution des aspérités. Notez que c’est même une méthode pour fabriquer des « marbres » dans le sens mécanique de très haute précision.

Ceci tend a montrer que la surface (l’aire) n’est pas primordiale mais plutôt sa rugosité, ses aspérités. Autre élément difficile à quantifier, lors de l‘appui des solides, est la déformation de leurs aspérités lors du contact (aplatissement et augmentation de la surface d’appui réelle) et si la surface d’appui augmente la pression de contact va diminuer. Donc vos surfaces seront déformées et l’interface des solides ne correspondra plus à celui d’avant la mise en contact. Vous comprenez pourquoi l’aire théorique géométrique n’est pas le paramètre primordial à tenir compte mais plutôt la rugosité (déformation, pression de contact) et les matières en contact (dureté, élasticité, etc).

Instinctivement on comprend que plus les aspérités sont importantes plus il sera difficile de mettre en glissement les solides. En diminuant la rugosité, la mise en mouvement s’en trouve facilitée mais attention si vos surfaces sont « trop » planes et « trop » lisses il est très probable qu’elles se « collent » (un effet de ventouse) et donc il sera très difficile de les faire glisser.

Comment définir cette rugosité (aspérité) et comment la mesurer ?

Pour la mesure l’homme a construit depuis le début des années 30, pour remplacer les doigts (méthode pas forcement performante bien que toujours utilisée) tous de sortes d’appareils fiables. Il a fallu quand même attendre les années 1980 pour avoir diverses méthodes pour qualifier les surfaces anisotropes (« pas isotrope » ) comme les interféromètres à lumière blanche. Donc, pour résumer, la rugosité se mesure grâce à un rugosimètre sophistiqué ou non (ouahhhh ça c’est de l’info  😀  !!)

Rugosimètre 2D Frottement, appareil de mesure 2D                   et  3D Frottement, appareil de mesure 3D

Concernant la définition de la rugosité, pas de problème également c’est déjà fait, il suffit de suivre les normes ISO 17.040.20,  pour comprendre et utiliser les chiffres/images de votre rugosimètre. Remarquez qu’après avoir mesuré la rugosité de vos deux solides, je ne suis pas sûr que puissiez bien définir le frottement statique ou le frottement de glissement de vos solides. Par contre vous aurez certainement une meilleure idée de la chose. C’est toujours cela de gagné. 😀

Pour essayer de vous donner quelques idées sur la mesure de l’état de surface de vos solides : les rugosimètres 3D (ceux qui contrôlent la surface du solide) peuvent vous fournir diverses valeurs comme :

les paramètres d’amplitude (Sa, Sq, Ssk, Sku, Sz, etc)
les paramètres de taux de portance (Smr, Sdc, Smc)
les paramètres d’isotropie (Str, etc)
les paramètres fonctionnels  (Sk, Vmp, etc)

et à vous de les interpréter !  😯  C’est plutôt indigeste ! Nous allons regarder uniquement un de ces paramètres Sa et tenter de le relier avec ce que vous pouvez trouver comme indication sur internet ou dans la littérature pour qualifier le frottement statique et/ou de glissement.

Sa pour surface et Ra pour ligne, c’est la relation la plus « directe », je m’explique, avant l’apparition (années 2000) des rugosimètres de surface qui intègrent la forme et les aspérités, on utilisait (« utilise » c’est encore beaucoup le cas) des rugosimètres 2D, le long d’une ligne. L’avantage ce sont des appareils simples, relativement bon marché et facile d’emploi.

Voici un résultat de mesure (fictif) avec un rugosimètre 2D:

Frottement, rugosité défaut forme et ondulationFrottement, rugosité RaDonc la valeur de rugosité Ra est une moyenne de la rugosité, ce qui est pour le moins aléatoire pour qualifier une surface et éventuellement un coefficient de frottement. Notez également que Ra ne donne aucune indication de la réelle répartition de la rugosité (pics, creux, forme, etc). Mais c’est la valeur la plus répandue dans les livres et sur internet pour définir des résultats de fabrication et par là le frottement de solides. La valeur Sa est une moyenne arithmétique qui englobe la rugosité Ra, le profil Pa et l’ondulation Wa mais bon on fait ce que l’on peut avec ce que l’on a !

Pour finir, malheureusement il faut être bien clair, la relation entre le frottement et la rugosité n’est pas prévisible et il est pratiquement impossible de définir : telle rugosité donnera tel coefficient de frottement.

Comme exemple, deux études sur des cas particuliers, une lecture anglaise de paliers lisses et une française sur des contacts lubrifiés.

Les molécules et atomes

Juste quelques points sans trop en ajouter car c’est déjà bien long ! Descendons au niveau moléculaire pour essayer de comprendre ce qu’il se passe. C’est à dire refaisons encore « un saut dans l’observation ».

Fluide et solide

Pour essayer de de comprendre de quoi on parle, je vous propose de voir ce qu’il se passe entre un fluide et une surface d’un solide. Cela est légèrement plus simple car pour certain fluide, seule la force de Van der Waals  est présente. Ce n’est pas important si vous ne savez pas de quoi il s’agit, imaginez seulement qu’entre les diverses molécules de notre fluide une seule force les maintien ensemble. Si vous regardez la courbe de la vitesse de ce fluide par rapport au paroi d’un tuyau, et c’est l’essentiel de nos modèles mathématiques actuels, on part de la vitesse zéro à la paroi à une certaine vitesse au centre du tuyau. Ceci est aussi vrai pour un écoulement (1) laminaire (tranquille) qu’un écoulement (2) turbulent.

Frottement, ecoulement fluide

MAIS près de la paroi, si l’on regarde au niveau des molécules, la vitesse du fluide est elle vraiment nulle ? En fait non car la molécule du fluide peut glisser sur les divers atomes/molécules de la surface du solide. Il y a bien interaction entre la molécule du fluide la plus proche du solide mais cela n’est pas forcement un ancrage ! il faut donc trouver le frottement de glissement d’une molécule de fluide sur un solide ! 😯  C’est ce que représente le diagramme ci-dessus. On commence à introduire, dans certain modèles, une vitesse non nulle aux parois. Mais bien sûr vous voyez tout de suite apparaître le problème : comment estimer cette vitesse Vg (ou le longueur b)? Pour l’instant on « admet » un coefficient, c’est un nouveau « coefficient de frottement ». Notez l’ironie, dire que l’on a voulu « expliquer le frottement » pour s’affranchir d’un coefficient empirique 😯 .

Solide et solide

Entre un solide et un solide, vous pouvez imaginer tout de sorte de situations et d’interactions. La cohésion atomique d’un solide est nettement supérieure à celle d’un fluide (c’est même LA différence) et donc les interactions atomiques de surface seront probablement plus faibles mais plus complexes à modéliser. Ce que l’on peu dire c’est que suivant les nano-agencements des surfaces on peut arriver à des glissements tout-à-fait particuliers qui vont jusqu’à la « suppression » du frottement comme l’exemple connu de cristaux d’or orientés perpendiculairement.

Beaucoup de recherches actuelles sont orientées sur ces nano-agencements de surface et il est difficile de prédire ce que l’on va découvrir (pour exemple la foison de produits hydrophobes qui apparaissent).

Conclusion

Si vous saviez ce qu’était le frottement avant de lire cet article, maintenant vous savez peut-être en plus que l’on est pratiquement incapable de le prédire. Même avec des tests c’est pas sûr car le nombre d’éléments et leurs interactions influençant le glissement de deux corps solides est trop important pour nos connaissances actuelles.

Je ne sais pas pour vous, mais pour moi le frottement c’est toujours aussi brumeux en fin compte.

Gardons le sourire car il y a encore quelque chose à trouver, tout n’a pas été découvert !